"Enter"a basıp içeriğe geçin

Galium Aparine Ekstresinin C6-Glioma Hücre Hattında Oluşturulan Glutamat Eksitotoksisitesi Üzerine Etkisinin Araştırılması

Investigation of the Effect of Galium Aparine Extract on Glutamate Excitotoxicity Induced in C6-Glioma Cell Line

Yazarlar: Roumina YOUSEFZADE1, Mohaddeseh HASSANPOUR1, Ayşegül ÖZTÜRK2, Sebahattin KARABULUT3

Corresponding author
3Sebahattin KARABULUT, Sivas Cumhuriyet Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu, Tıbbi Hizmetler ve Teknikler Bölümü, Sivas, Türkiye
E-mail: sbkarabulut@cumhuriyet.edu.tr
Other authors
1Sivas Cumhuriyet Üniversitesi Tıp Fakültesi, Dönem 3, Sivas, Türkiye
2Sivas Cumhuriyet Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu, Terapi ve Rehabilitasyon Bölümü, Sivas, Türkiye

ÖZET

Amaç: Beyinin ana uyarıcı nörotransmitteri olan glutamat’ın suprafizyolojik konsantrasyonları glutamat eksitotoksisitesine yol açmaktadır. Galium Aparine (GA) Anadolu’da “yoğurt otu” olarak bilinen ve halk arasında sarılık, kanser ve epilepsi gibi hastalıkların tedavisinde kullanılan bir bitkidir. Bu çalışmada, GA tedavisinin C6 hücrelerinde glutamat nörotoksisitesine karşı hücresel sağ kalıma, oksidan-antioksidan kapasite üzerine etkisi araştırılmıştır.

Yöntem: C6-glioma hücreleri kültüre edildikten sonra; 1.Kontrol grubu, 2.Glutamat grubu, 3. Galium aparine grubu, 4. Galium aparine + Glutamat grubu olmak üzere 4 ayrı grup oluşturuldu. Tüm kontrol ve deney gruplarında uygulanan tedavilerin C6 hücre hattında XTT yöntemiyle nöronal sağ kalıma, Total oksidatif stres (TOS) ve Total antioksidatif stres (TAS) düzeylerine etkileri araştırıldı.

Bulgular: Glutamat’ın hücre sağ kalımını azaltıcı etkisi GA tarafından iyileştirildi. Ayrıca eksitotoksisitenin indüklediği TOS artışı GA tedavisi ile azaltıldı. Buna ilaveten GA hücresel antioksidan düzeyleri artırdı.

Sonuç: Bu sonuçlar aşırı glutamatın yol açtığı hücresel hasarlara karşı GA’nin nöroprotektif etkisine ve bu etkide oksidan-antioksidan dengedeki iyileşmenin yer aldığına işaret etmektedir.

Anahtar kelimeler: C6 glioma, Galium aparine, Glutamat.

ABSTRACT

Aim: Supraphysiological concentrations of glutamate, the brain's main excitatory neurotransmitter, leads to glutamate excitotoxicity. Galium aparine (GA) is a plant known as a "yogurt herb" in Anatolia and is used in the treatment of diseases such as jaundice, cancer, and epilepsy. This study investigated the effects of GA treatment on cellular viability and oxidant-antioxidant capacity against glutamate neurotoxicity in C6 cells.

Method: C6-glioma cells were cultured and 4 groups were divided into 1. control group, 2. glutamate group, 3. Galium aparine group, 4. Galium aparine + glutamate group. The effects of the treatments administered in all control and experimental groups on neuronal survival, Total oxidative stress (TOS), and Total antioxidative stress (TAS) levels in the C6 cell line were investigated.

Results: The reducing effect of glutamate cytotoxicity on cell survival was ameliorated by GA. In addition, the increase in TOS induced by excitotoxicity was decreased by GA treatment. In addition, GA increased cellular antioxidant levels.

Conclusion: These results indicate that GA has a neuroprotective effect against cellular damage caused by excess glutamate and that the improvement in oxidant-antioxidant balance is involved in this effect.

Keywords: C6 glioma, Galium aparine, Glutamate.

How to Cite (APA 7)

Yousefzadeh, R., Hassanpour, M., Öztürk, A., Karabulut, S. (2023). Galium Aparine Ekstresinin C6-Glioma Hücre Hattında Oluşturulan Glutamat Eksitotoksitetesi Üzerine Etkisinin Araştırılması. Health Sciences Student Journal, 3(1), 8-13. https://www.healthssj.com/galium-aparine-ekstresinin-c6-glioma-hucre-hattinda-olusturulan-glutamat-eksitotoksisitesi-uzerine-etkisinin-arastirilmasi/

KAYNAKLAR

  1. Zhou, Y., & Danbolt, N. C. (2014). Glutamate as a neurotransmitter in the healthy brain. Journal of neural transmission (Vienna, Austria : 1996), 121(8), 799–817. https://doi.org/10.1007/s00702-014-1180-8
  2. Lehre, K. P., & Danbolt, N. C. (1998). The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. The Journal of neuroscience : the official journal of the Society for Neuroscience, 18(21), 8751–8757. https://doi.org/10.1523/JNEUROSCI.18-21-08751.1998
  3. Lewerenz, J., & Maher, P. (2015). Chronic Glutamate Toxicity in Neurodegenerative Diseases-What is the Evidence?. Frontiers in neuroscience, 9, 469. https://doi.org/10.3389/fnins.2015.00469
  4. Behrens, P. F., Franz, P., Woodman, B., Lindenberg, K. S., & Landwehrmeyer, G. B. (2002). Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain : a journal of neurology, 125(Pt 8), 1908–1922. https://doi.org/10.1093/brain/awf180
  5. Cho C. H. (2013). New mechanism for glutamate hypothesis in epilepsy. Frontiers in cellular neuroscience, 7, 127. https://doi.org/10.3389/fncel.2013.00127
  6. Spreux-Varoquaux, O., Bensimon, G., Lacomblez, L., Salachas, F., Pradat, P. F., Le Forestier, N., Marouan, A., Dib, M., & Meininger, V. (2002). Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. Journal of the neurological sciences, 193(2), 73–78. https://doi.org/10.1016/s0022-510x(01)00661-x
  7. Zhang, Z., Zhang, S., Fu, P., Zhang, Z., Lin, K., Ko, J. K., & Yung, K. K. (2019). Roles of Glutamate Receptors in Parkinson's Disease. International journal of molecular sciences, 20(18), 4391. https://doi.org/10.3390/ijms20184391
  8. Bokhari, J., Khan, M. R., Shabbir, M., Rashid, U., Jan, S., & Zai, J. A. (2013). Evaluation of diverse antioxidant activities of Galium aparine. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 102, 24–29. https://doi.org/10.1016/j.saa.2012.09.056
  9. Atmaca, H., Bozkurt, E., Cittan, M., & Dilek Tepe, H. (2016). Effects of Galium aparine extract on the cell viability, cell cycle and cell death in breast cancer cell lines. Journal of ethnopharmacology, 186, 305–310. https://doi.org/10.1016/j.jep.2016.04.007
  10. Korkmaz, N. , Dayangaç, A. & Sevindik, M. (2021). ANTIOXIDANT, ANTIMICROBIAL AND ANTIPROLIFERATIVE ACTIVITIES OF GALIUM APARINE. Journal of Faculty of Pharmacy of Ankara University, 45 (3) , 554-564. DOI: 10.33483/jfpau.977776
  11. Erel O. (2004). A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical biochemistry, 37(2), 112–119. https://doi.org/10.1016/j.clinbiochem.2003.10.014
  12. Erel O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical biochemistry, 38(12), 1103–1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008
  13. Orhan, N., Deliorman Orhan, D., Aslan, M., Süküroğlu, M., & Orhan, I. E. (2012). UPLC-TOF-MS analysis of Galium spurium towards its neuroprotective and anticonvulsant activities. Journal of ethnopharmacology, 141(1), 220–227. https://doi.org/10.1016/j.jep.2012.01.056
  14. Kim, G. H., Kim, J. E., Rhie, S. J., & Yoon, S. (2015). The Role of Oxidative Stress in Neurodegenerative Diseases. Experimental neurobiology, 24(4), 325–340. https://doi.org/10.5607/en.2015.24.4.325
  15. Parfenova, H., Basuroy, S., Bhattacharya, S., Tcheranova, D., Qu, Y., Regan, R. F., & Leffler, C. W. (2006). Glutamate induces oxidative stress and apoptosis in cerebral vascular endothelial cells: contributions of HO-1 and HO-2 to cytoprotection. American journal of physiology. Cell physiology, 290(5), C1399–C1410. https://doi.org/10.1152/ajpcell.00386.2005
  16. Duchen M. R. (2000). Mitochondria and calcium: from cell signalling to cell death. The Journal of physiology, 529 Pt 1(Pt 1), 57–68. https://doi.org/10.1111/j.1469-7793.2000.00057.x
  17. Grilli, M., Pizzi, M., Memo, M., & Spano, P. (1996). Neuroprotection by aspirin and sodium salicylate through blockade of NF-kappaB activation. Science (New York, N.Y.), 274(5291), 1383–1385. https://doi.org/10.1126/science.274.5291.1383
  18. Hengartner M. O. (2000). The biochemistry of apoptosis. Nature, 407(6805), 770–776. https://doi.org/10.1038/35037710
  19. Ilina, T., Kashpur, N., Granica, S., Bazylko, A., Shinkovenko, I., Kovalyova, A., Goryacha, O., & Koshovyi, O. (2019). Phytochemical Profiles and In Vitro Immunomodulatory Activity of Ethanolic Extracts from Galium aparine L. Plants (Basel, Switzerland), 8(12), 541. https://doi.org/10.3390/plants8120541
  20. Pan, P. H., Lin, S. Y., Wang, Y. Y., Chen, W. Y., Chuang, Y. H., Wu, C. C., & Chen, C. J. (2014). Protective effects of rutin on liver injury induced by biliary obstruction in rats. Free radical biology & medicine, 73, 106–116. https://doi.org/10.1016/j.freeradbiomed.2014.05.001
  21. Yue, S., Xue, N., Li, H., Huang, B., Chen, Z., & Wang, X. (2020). Hepatoprotective Effect of Apigenin Against Liver Injury via the Non-canonical NF-κB Pathway In Vivo and In Vitro. Inflammation, 43(5), 1634–1648. https://doi.org/10.1007/s10753-020-01238-5
  22. Ergül, M., & Taşkıran, A. Ş. (2021). Thiamine Protects Glioblastoma Cells against Glutamate Toxicity by Suppressing Oxidative/Endoplasmic Reticulum Stress. Chemical & pharmaceutical bulletin, 69(9), 832–839. https://doi.org/10.1248/cpb.c21-00169